

Application of Machine Learning Models to Mine Haulage Sustainability

Kevin Dagenais, Co-founder & CEO Haulage & Loading Conference. Tucson, Arizona. kdagenais@cascadiascientific.com

Our Meeting Agenda

- Introductions
- ML & Mine Haulage Sustainability Objectives
- Development of ML Mine Haulage Models
- Evaluating Model Performance
- Model Application Case Studies & Results
- Conclusions
- Q & A

Cascadia Scientific Inc

- Est. 2018 Vancouver B.C.
- Founded on High Accuracy Fuel Measurement
- Matured into a leading ML provider for mining
- Customers in 10 Countries on 5 Continents

Kevin Dagenais, P.Eng, CEO

- Est. 1980 Montreal QC
- M.A.Sc Controls System Engineering (McMaster, 2005)
- Embedded Systems and Vehicle Network Specialist
- Practiced in Data Science since 2018 Co-founding Cascadia Scientific

Machine Learning

- A study in the field of artificial intelligence focused on the construction of methods that "learn" from training data
- These methods are commonly used to produce models that predict, explain or decide an outcome or a course of action
- Highly applicable in situations where satisfactory algorithmic solutions are unavailable
- Credited with the development of linear regression models, neural networks, random forests and gradient boosting

Mine Haulage Sustainability Concerns

Reduce Energy per ton moved

• Reduced fuel usage Increased runtime Reduced battery/charging requirements

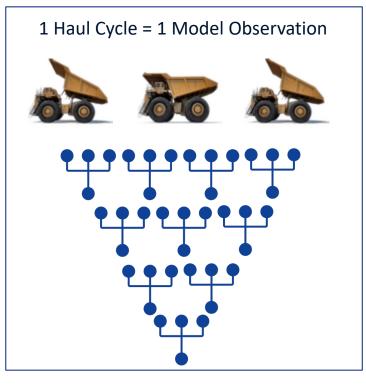
 Renewable fuels Pre/Post combustion strategies

 CO_2

•Wear parts •Lubricants

CASCADIA SCIENTIFIC INC

Reduce Extended Component/ Emissions



Consumable Life

CASCADIA SCIENTIFIC INC

Applications of ML to Haulage Sustainability

Applications:

- Normalized efficiency assessment of haulage assets
- Normalized efficiency assessment of operator practice
- Validation of 3rd party product efficiency claims
- Assessment of Real-time oil condition
- Optimization of mine ops and mine planning strategies

Developing a Haulage Model

1. Define the question or hypothesis:

"Which trucks in my fleet are over consuming based on the work they perform"

2. Define the model target: Normalized Liters per Cycle

3. Assess and select correlated model inputs:

Truck ID, Tonnage, duration, distance, vertical profile, zone, queuing time, week of year

4. Select a model type: Gradient Boosted Tree

5. Establish model sensitivity and reliability aims "1% sensitivity with 95% confidence"

6. Train the model and evaluate performance

Consumption			0.22	0.075	0.86	0.84		0.16	0.19			0.48	0.31
Loaded_Vertical_Travel			-0.18	-0.021	0.65		0.4	0.14	0.044	0.54	0.7	0.22	0.2
Unloaded_Vertical_Travel	0.22	-0.18	1	0.013	0.25	0.1	0.32	0.015	0.2	0.28	0.086	0.32	-0.025
Payload	0.075	-0.021	0.013	1	-0.02	-0.011	-0.022	-0.029	-0.052	0.0073	0.029	-0.011	0.14
Distance	0.86	0.65	0.25	-0.02	1	0.83	0.88	0.11	0.17	0.79	0.71	0.57	-0 14
Loaded_Distance	0.84	0.75	0.1	-0.011	0.63		0.47	0.18	0.051		0.86	0.26	0.082
Unloaded_Distance	0.65	0.4	0.32	-0.022	0.88	0.47		0.024	0.23	0.7	0.39		0.28
Loaded_Idle	0.15	0.14	0.015	-0.029	0.11	0.18	0.024	1	0.048	0.32	0.54	0.037	0.075
Unloaded_Idle	0.19	0.044	0.2	-0.052	0.17	0.051	0.23	0.048		0.63	0.051	0.83	0.076
Engine_Hours	0.77	0.54	0.28	0.0073		0.68		0.32			0.7	0.86	0.053
Loaded_Engine_Hours		07	0.085	0.029	0.71	0.86	0.39	0.54	0.051	07		0.22	0.18
Unloaded_Engine_Hours	0.48	0.22	0.32	-0.011	0.67	0.26		0.037	0.63		0.22	1	0.059
PerKmConsumption	0.31	0.2	-0.025	0.14	-0.14	0.082	-0.28	0.075	0.076	0.053	0.18	-0.059	1
	Consumption	Loaded_Vertical_Travel	Unioaded_Vertical_Travel	Payload	Distance	Loaded_Distance	Unloaded_Distance	Laaded_Idle	Unipaded_Idle	Engine_Hours	Loaded_Engine_Hours	Unioaded_Engine_Hours	PerformConsumption

- 1.0

- 0.8

- 0.6

-02

- 0.4

- 0.0

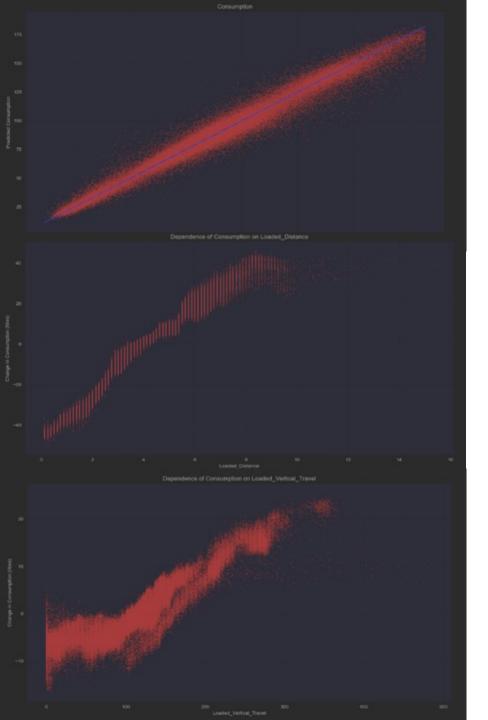
-0.2

Developing a Haulage Model

1. Define the question or hypothesis:

"Which trucks in my fleet are over consuming based on the work they perform"

2. Define the model target: Normalized Liters per Cycle


3. Assess and select correlated model inputs:

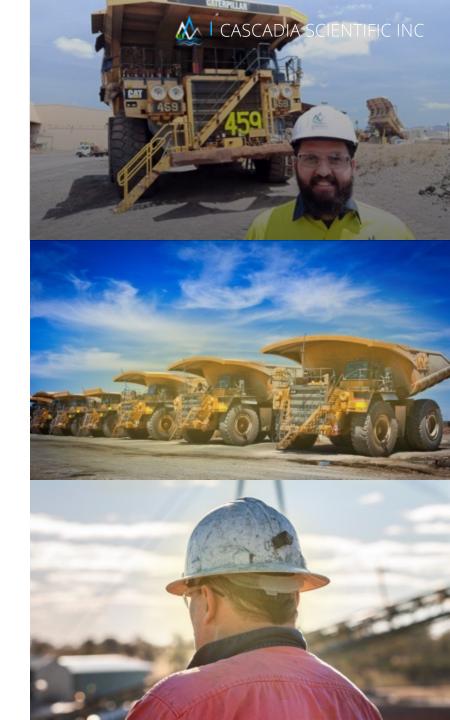
Truck ID, Tonnage, duration, distance, vertical profile, zone, queuing time, week of year

4. Select a model type: Gradient Boosted Tree

5. Establish model sensitivity and reliability aims "1% sensitivity with 95% confidence"

6. Train the model and evaluate performance

Evaluate Model Performance


1. Withhold training data and quantify error: Randomize and Repeat

2. Visualize and evaluate model error: Limited scatter, centered on y = x.

3. Assess correlation between well understood variables and targets Does the model make sense

Applying Models to Practice Case Studies

- Targeted Truck Restorative Maintenance
- Fleet replacement/upgrade decision support
- Operator Performance Management System

Targeted Restorative Maintenance

- Models produced weekly & examined for equipment penalty
- Equipment penalties > 1 gal/cycle trigger maintenance referral
- Standardized level-1 efficiency service performed
- Service dates and details captured for post intervention assessment

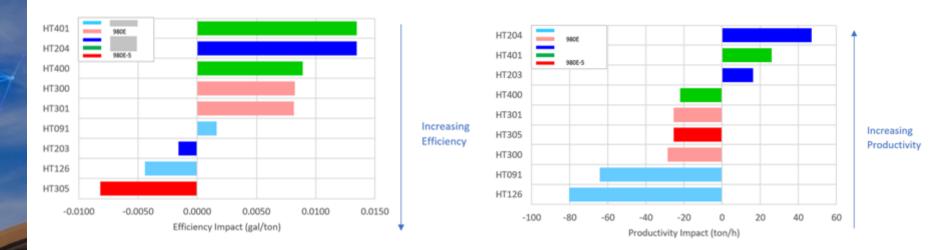

Ranking					
Rank 🗴 🛈	Name 🖕 🛈	Haul Cycles 🖕 🛈	Impact (L/Cycle)	Actual ①	Expected ①
50	022-475	130	8.2693	151.4030	139.2472
49	022-478	291	7.7113	95.4056	86.0809
48	022-430	175	5.8706	73.4195	65.9895
47	022-448	335	4.9476	67.1279	61.1245
46	022-489	169	3.8042	107.1263	101.4804
45	022-484	271	3.2359	75.6949	71.8818
44	022-488	129	3.1801	87.2443	83.5018
43	022-426	256	2.8729	90.0907	86.2620
42	022-447	240	2.1940	85.0601	81.4446

Targeted Restorative Maintenance

- Typical findings related to leaks, filters, injectors, cooling issues
- Inconclusive findings trigger level-2 intervention
- Impact assessed with second model trained with intervention flag
- Average annualized benefit per intervention 4,862 gal (CAT 793D)

Fleet Upgrade Decision Support

Large operator of mixed manufactured fleet considering repowering or replacing aging units. Evaluated performance of various configurations:


- Electric Drive vs. Mechanical Drive
- Engine Upgrades vs. Equipment Replacement
- Various payload sizes
- Multiple OEMs

CASCADIA SCIENTIFIC IN

• Truck Revision upgrades

Fleet Upgrade Purchasing Insights

CASCADIA SCIENTIFIC INC

- Model trained on fuel per ton, rather than normalized cycle consumption
- Most efficient asset showed 6.2 gal/cycle reduction compared to previous generation (based on 400-ton payload)
- Most efficiency asset delivered above average productivity (t/h)

Fleet Upgrade Purchasing Insights

CASCADIA SCIENTIFIC INC

Komatsu-Mitsui y Antamina concretan importante acuerdo para renovar flota de camiones

This is the acquisition of a fleet of 20 Komatsu haulage trucks, model 980E-5SE, which have a load capacity of 400 MT.

These units are equipped with Cummins QSK95 engines, 4400 Hp, recognized for having the highest power on the market. A vehicle and an engine that, together, make this mining haul truck the fastest and most productive in the industry.

This commercial agreement has a potential of great relevance, since it contemplates the possibility of buying up to 100 trucks of the same characteristics. A fact that, if materialized, would become a historic purchase agreement for mining in Peru.

"This is certainly a milestone within the mining industry and therefore also for Komatsu-Mitsui. Never had a company made an agreement to purchase equipment of this size and magnitude in Peru. We are proud of the trust that has placed **#Antamina** in us and in our technology offering, through our Komatsu and Cummins brands," said **Tomas Eloy Martinez**, executive president of Komatsu – Mitsui Maquinarias Peru.

Allies in the future of mining

The relationship between both actors in the mining

Operator Performance Management

Retrospective Analysis (SmartRView)

- Models trained on rolling 3-week periods
- Model derived operator penalties extracted
- Struggling operators are contacted
- Simulator based training is made available

Short Interval Control (ML Coach)

- Model trained without operator ID's
- Active shift cycles compared to predictions
- Average deviation calculated across fleet
- Consistent model underperformance through shift triggers radio callout

Operator Performance Management

Smart RView 🎄

Retrospective Analysis

- Average savings/intervention 0.39 gal/h
- Annualized benefit of 175,000 gallons saved

MLCOACH

Short Interval Control

- On-site "Base" is being constructed
- 24/7 "dispatch" style monitoring
- System augmented with "Bad practice" alerts
- Work on-going to train models to identify ideal situation operator behaviors

CASCADIA SCIENTIFIC INC

ML Haulage models can accurately explain nuanced details of mine haulage
These insights can be used to effectively improve mine haulage sustainability today
These techniques will have continued, if not increased, relevance as we pursue decarbonization as an industry

Thank you