The **new face** of Haul Truck linings

Robert Paxman Sales Support Manager

Henrik Persson Global Product Manager Lining

The new face of Haul truck linings

Several factors influence total cost of truck operation

The lining is one factor to consider

This paper presents a new perspective of lining understanding the truth about rubber Haul Truck Linings

metso

New Face of Haul Truck Solutions – May 2015

The new face of Haul Truck linings

A study have been conducted comparing classic steel lining with an adapted truck rubber wear lining

Results shows that:

- The adapted rubber absorbs stress better at every point of the truck work cycle to protect the structure
- The adapted rubber shows increased availability of trucks with less maintenance and increased wear life
- The adapted rubber shows great improvements of the working environment with reduced noise and vibration

Example from study

- Operating in Copper mine
- 320 tones truck
- 10 x CAT 795 trucks in operation
- 3 spare boxes
- Service interval with steel lining: 18 month
- Material lump size up to 6.5 foot (2 meter)
- Climate: -58°F to 104°F (-50°C to +40°C)

Savings of 3 071 600 \$ during a period of 5 years

Sensor orientation

Comparison of trucks equipped with steel lining and adapted rubber lining

Location of sensor points carefully selected together with the customer – the most problematic areas where a lot of maintenance is required

Sensor orientation

- Vibrations in tray bottom
- Strain in tray bottom
- Strain in cross beams and rear shaft
- · Noise in driver cab

Schematic explanation of measuring & software

Truck Health Progra	m & Logout	
CAT795F Steel Lining CAT	795F Metso Truck Lining 🗧 Excavator Driving Cab 🕷	
Position (masl): Speed (km/h): Inclination (deg): Noise (dB): Strain gauges (c): Vibrations (g):	Altitude Speed over ground Truck Interior driving cab Tray front 1 Tray bottom 1 Truck frame 1 Rear shaft Tray front (2) 1 Tray bottom (X) 1 Truck frame (X)	
From: 2015-02-16 05	• 48 • 42 • To: 2015-02-16 12 • 58 • 59 •	

Impact and vibrations

Impact and vibration

Impact and vibrations

- Impact and vibrations cause strain and stress on objects
- The term impact is used to describe a high kinetic energy that acts on an object
 - Impact is often measured by its peak acceleration in g's and pulse duration
 - Example: a short pulse shock (1 ms) with high magnitude (300 g) has little damage potential, but a 20 ms 300 g shock might be critical
- Vibrations are periodic oscillations
 - Vibrations are measured in g's as well as frequency
- Large g's can be very destructive due to the strain they induce, especially if reoccurring
- Piezoelectric accelerometers were used to measure vibrations and impact (g)

Vibrations in tray bottom during loading / dumping Comparing traditional steel with rubber lining

Vibrations in tray bottom during loading

Comparison between steel and rubber

- Truck with steel lining
 - The impact on the tray was very high reaching sensor's maximum of 100g almost every time the steel lined truck was being loaded
- Truck with adapted rubber lining
 - The impact at the same point was 95% less!

Vibrations in tray bottom during dumping

Strain rear shaft during dumping

Strain

- Strain **e** is the result of stress **s** on an object
- If a material is stressed by a force it often changes shape: extended, shortened or pulled apart
- If a material is subjected to strain frequently it will eventually break from fatigue, this happens on a tray
- The strain is defined as the change in length divided by the material's original length

- If you apply no force to an object, no strain
- If you apply a certain force you'll extend the object's length by a certain amount, equal to a certain strain
- If you apply more force so you double the extension, you have produced twice as much strain

Strain in tray bottom during loading / dumping Comparing traditional steel with rubber lining

Strain in rear shaft during loading / dumping Comparing traditional steel with rubber lining

Strain in rear shaft during loading

Strain in rear shaft during dumping

Noise

- Noise is measured in units of sound pressure levels called decibels, using A-weighted sound levels (dBA)
- Decibels are measured on a logarithmic scale which means that a small change in the number of decibels results in a huge change in the amount of noise and the potential damage to a person's hearing
- How "loud" something is perceived is highly subjective but as a rule of thumb: an increase of 10 dB will be perceived as double the volume

Sound sources (noise) examples with distance	Sound Pressure Level dB
Jet Aircraft, 50 m away	140
Threshold of pain	130
Threshold of discomfort	120
Chainsaw, 1m distance	110
Disco, 1 m from speaker	100
Diesel truck, 10 m away	90
Kerbside of busy road, 5 m	80
Vacuum cleaner, distance 1 m	70
Conversational speech, 1 m	60
Average home	50
Quiet library	40
Quiet bedroom at night	30
Background in TV studio	20
Rustling leaves in distance	10
Hearing threshold	0

Noise in driving cab during loading Comparing traditional steel with rubber lining

Conclusions

How is it possible to save 3 071 600 \$

during a period of 5 years

Where do the savings come from...

- Reduced vibrations and strain results in less maintenance => increased availability
- Less wear results in less maintenance => increased availability
- Rubber absorbs stress better at every point of the truck work cycle to protect the structure
- Improved health, safety and environment.
 - Less noise and vibrations means better working conditions
 - In addition, the rubber modules are easy to cut, unlike cutting steel, this process does not emit smoke (fumes)

Adapted rubber lining = protection, wear resistance & environmental improvements

Where do the savings come from...

Steel lining

- Interval 18 months re-lining
- Weight increase every 18 month
- Stop for maintenance every 18 month
- 3 spare boxes

Rubber lining

- Low average weight over the period
- Increased availability due to less maintenance (stop for re-lining)
- Less weight over period => less fuel consumption
- 1 spare box

Gathering data

Total Net Savings over a period of 5 years Total transported tonnes = 16 599 960

	\$ per ton	Total \$
Initial installation cost	-0,0028	- 46 178
Service and maintenance	0,0134	222 399
Reduced number of boxes	0,0049	81 451
Reduced carryback	0	0
Fuel consumption	0,029	49 488
Environmental	?	?
Total Net Value		307 160

307 160 USD per truck over a period of 5 years Savings of 3.071.600 USD for the fleet of 10 trucks

With the adapted rubber lining, everything is reduced: downtime, numbers of spare boxes, maintenance costs and more.

The only increase is the earnings in dollars/ton

www.metso.com

Rubber vs steel

Carry back

Volume

