

Improve Equipment Reliability and Reduce Costs with Clean Oil

Presented by: Caren Caffrey C.C.JENSEN Inc.

Topics

- Oil Contamination 101
- Mobile Mining Equipment conundrum
- ➤ CJCTM Mobile Flushing Unit concept
- Case Studies
- Questions

Primary Causes of Oil Related Problems

Particles creating abrasive wear and machine breakdown

Essential for best practice lubrication: Cool, clean and dry oil

Abrasive Wear

Fatigue Wear

H&L 2013 Improve Equipment Reliability & Reduce Costs with Clean Oil

Oil Contamination by Particles

Dynamic Oil Film

ISO Standards - 4406/1999

The ISO 4406/1999 classification of particle contents was introduced to facilitate comparison in particle counting, using automatic particle counters.

ISO 4407/1999 is describing particle counting using a microscope (particle sizes 2 / 5 / 15 μ m).

Sudden break-down in an oil system is often caused by large particles (\geq 14 µm) in the oil while slower, progressive faults, e.g. wear and tear, are caused by the smaller particles (2-6 µm).

This is one of the explanations why the particle reference sizes were set to 4 μ m, 6 μ m and 14 μ m in ISO 4406. A typical sample from a new oil contains in every 100 ml:

	Contamination Classes according to the new ISO 4406/1999 Standard:										
	More than	Till	Class								
	8,000,000	16,000,000	24								
	4,000,000	8,000,000	23								
	2,000,000	4,000,000	22								
	1,000,000	2,000,000	21								
	500,000	1,000,000	20								
_	250,000	500,000	19								
	130,000	250,000	18								
	64,000	130,000	17								
	32,000	64,000	16								
	16,000	32,000	15								
	8,000	16,000	14								
	4,000	8,000	13								
	2,000	4,000	12								
	1,000	2,000	11								
	500	1,000	10								
	250	500	9								
-	130	250	8								
	64	130	7								
	32	64	6								

Max. number of particles per 100 ml fluid after their size ranges.

120,000 particles ≥ 6 micron ← 14,000 particles ≥ 14 micron ↓

 \geq 4 micron

450,000 particles

Typically given per millilitre in the US and Canada

Introduced in the ISO classification table (on the right), this oil sample has a contamination class of **19/17/14.**

Examples of ISO Codes

Test membranes and microscopic photographs of various contamination levels

New oil is typically around ISO 19/17/14

LET – Cleanliness Level ISO Codes, Complete

Current	Expected Cleanliness level (ISO Code)																			
Machine Cleanliness (ISO Code)	21/19/	16	20/1	8/15	19/ 1	17/14	18/′	16/13	17/1	15/12	16/	14/11	15/1	3/10	14/	12/9	13,	/11/8 ^{ure}	:e: Цохід 121	¥0/7
24/22/19	2 1.6 1.8 1.3	6 3	3 2.3	2 1.7	4 3	2.5 2	6 3.5	3 2.5	7 4.5	3.5 3	8 5.5	3.5	>10 7	5 4	>10 8	6 5	>10 10	7 5.5	>10 >10	>10 8.5
23/21/18	1.5 1.5 1.5 1.3	5 3	2 1.8	1.7 1.4	3 2.2	2 1.6	4 3	2.5 2	5 3.5	3 2.5	7 4.5	3.5 3	9 5	4 3.5	>10 7	5 4	>10 9	7 5.5	>10 10	10 8
22/20/17	1.3 1.2 1.2 1.0	5	1.6 1.5	1.5 1.3	2 1.8	1.7 1.4	3 2.3	2 1.7	4 3	2.5 2	5 3.5	3 2.5	7 5	4 3	9 6	5 4	>10 8	7 5.5	>10 10	9 7
21/19/16			1.3 1.2	1.2 1.1	1.6 1.5	1.5 1.3	2 1.8	1.7 1.5	3 2.2	2 1.7	4 3	2.5 2	5 3.5	3 2.5	7 5	4 3.5	9 7	6 4.5	>10 9	8 6
20/18/15					1.3 1.2	1.2 1.1	1.6 1.5	1.5 1.3	2 1.8	1.7 1.5	3 2.3	2 1.7	4 3	2.5 2	5 3.5	3 2.5	7 5.5	4.6 3.7	>10 8	6 5
19/17/14							1.3 1.2	1.2 1.1	1.6 1.5	1.5 1.3	2 1.8	1.7 1.5	3 2.3	2 1.7	4 3	2.5 2	6 4	3 2.5	8 6	5 3.5
18/16/13				1					1.3 1.2	1.2 1.1	1.6 1.5	1.5 1.3	2 1.8	1.7 1.5	3 2.3	2 1.8	4 3.7	3.5 3	6 4.5	4 3.5
17/15/12	Hy and E	draul d Die	lics esel	Ro Ele	olling ment						1.3 1.2	1.2 1.1	1.6 1.5	1.5 1.4	2 1.8	1.7 1.5	3 2.3	2 1.8	4 3	2.5 2.2
16/14/11	J	ourn	al	G	iear								1.3 1.3	1.3 1.2	1.6 1.6	1.6 1.4	2 1.9	1.8 1.5	3 2.3	2 1.8
15/13/10	an Ma	d Tui achin	rbo ery	Bo and	oxes other	s									1.4 1.2	1.2 1.1	1.8 1.6	1.5 1.3	2.5 2	1.8 1.6

Mobile Mining Equipment Conundrum

Operation vs. Maintenance

The Cost of Wear

Repairing the wheel motor on a mining haul truck

- Lost production: \$190,000 + per day
- Oil Change: \$3,500 \$4,000 + labor
- Minor repair (seals replacement): \$90,000 - \$130,000
- Major repair (seals, bearings, sleeves)
 \$230,000 \$260,000
- Replacement of wheel motor: Cost: \$650,000 - \$780,000 Lead Time: 1 – 21 Days

Avoid Expensive Downtime

What should you do?

- Ensure Clean Oil by flushing out dirt, wear particles and sludge from the oil systems (hydraulic/gear motor/differential etc.)
- Clean Oil improves oil and additive life.
- Clean Oil reduces component wear and significantly increases reliability & life expectancy.

The solution: CJC[™] Mobile Flushing Unit, MFU

CJC[™] Mobile Flushing Unit

- Optimized for high viscosity lubricants
- Measure particulate contamination with in-line CJC[™] Oil Contamination Monitor
- Automatic flow regulation based on viscosity
- Heated oil reservoir
- Preheaters maintain optimal oil temperature
- 3 um cellulose depth filter inserts
- Large dirt holding capacity (~50-60 Lbs)
- Cam-Lock couplings for easy mounting
- Removable tool box

The CJC[™] Mobile Flushing Unit

Flexible installation options

During PM in the workshop area

Case 1: Komatsu 930E Haul Truck

Objective: Exceed OEM oil cleanliness specs

- Mobil SHC 680 gear oil
- Severe weather conditions (minus 4°C)
- Oil cleanliness before flushing: ISO 25/25/23
- In 10 min, contamination reduced 98%

• Oil Cleanliness after 90 Min: ISO 16/15/11

Life Expectancy Extension: ~3.5X

H&L 2013 Improve Equipment Reliability & Reduce Costs with Clean Oil

Case 2: Caterpillar 7495 Shovel

Goal: Filter new hydraulic oil to OEM USL ISO 19/17/14

New shovel being assembled on-site

- Main reservoir: 3,785 L ISO 32 hydraulic oil
- Bulk oil initial cleanliness: ISO 23/19/14

Problem: Oil is added to the shovel in 200 L batches. Each batch must be below the required ISO target before the machine will transfer to main reservoir. The on-board filter was not capable of cleaning the oil to the desired level.

Solution:

Each batch was pre-cleaned with CJC[™] MFU. ISO 14/13/11 was achieved after 30 minutes of processing. Oil cleanliness after 30 min: ISO 14/13/11

Case 3: Caterpillar 793C/D Haul Truck

Goal: Reduce costs by flushing differential/planetary gear oil

- 1,022 L of SAE 60 Final Drive Axle Oil (FDAO)
- Target: ISO 19/17/14
- Planetaries & differential share oil sump
- CJC[™] MFU draws oil from differential, return is split and flushed in through each wheel
- Flushing is performed every 500 hours during 8 hour 'Mini-PM'

Oil cleanliness after 8 hours: ISO 17/15/12

Case 3: Caterpillar 793C/D Haul Truck

Financial Results

Initial Benchmarks:

Wheel Assembly Rebuild:18,000 hoursOil:~\$3,600Average Cleanliness:ISO 22/20/17

New Benchmarks After CJC[™] MFU:

Wheel Assembly Rebuild:	25,000 hours
Oil:	~\$3,600
Average Cleanliness:	ISO 17/15/13

Average Fleet Operating Hours / year: 290,000

Wheel Assembly Rebuilds:

Initial: 16 per year New: 12 per year Cost: ~\$95,000 each Savings: ~\$380,000

Additional Savings: ~\$100,000

Reduced oil consumption, labor, downtime

Savings:

~\$480,000 - 500,000

Case 4: Caterpillar 797B Haul Truck

Goal: Reduce oil change costs for 100+ truck fleet

Planetary / Differential Gear system: SAE 60 Final Drive Axle Oil (FDAO) Oil Volume:

- 700 L in Differential
- 1,480 L total

Oil changed every 2,000 hours or less \$15,000 + per truck 4 x per year

ISO Code Particle Size

	4 µm	6 µm	15 μm
Start up	22	20	15
5 hour flush	16	15	12
Reduction	98.0%	96.5%	93.0%

Mine Equipment Reference List

Region	Industry	Equipment Type	Equipment Model	Oil Type
Alberta	Oil Sands	Mine Truck	Caterpillar 797B	SAE 60 Gear Oil, FDAO
Alberta	Oil Sands	Mine Truck	Komatsu 930E	ISO 680 Gear Oil
Alberta	Oil Sands	Mine Shovel	Caterpillar 7495	ISO 46 Hydraulic Oil
Alberta	Oil Sands	Mine Shovel	Caterpillar 797B	SAE 60 Gear Oil, FDAO
BC	Copper	Mine Truck	Caterpillar 793	SAE 60 Gear Oil, FDAO 5W30 Hydraulic Oil
BC	Copper & Gold	Mine Shovel	Caterpillar 7495	Hydraulic Oil
BC	Gold	Mine Scoops	Caterpillar R1600	HD 50 Gear Oil
Ontario	Gold	Mine Shovels & Trucks	Caterpillar 7495 Caterpillar 795	Hydraulic Oil SAE 60 Gear Oil, FDAO

Thank You!

Klassen Specialty Hydraulics Inc. Harvey Klassen, Rick Klassen, Paul Berger

