

SLS Global Technical Support The Formula for your Success Best Practices in Fuel Supply Chain Cleanliness Management

Haulage & Loading 2013 May 19 - 22, 2013

> The Wigwam Resort Phoenix, Arizona

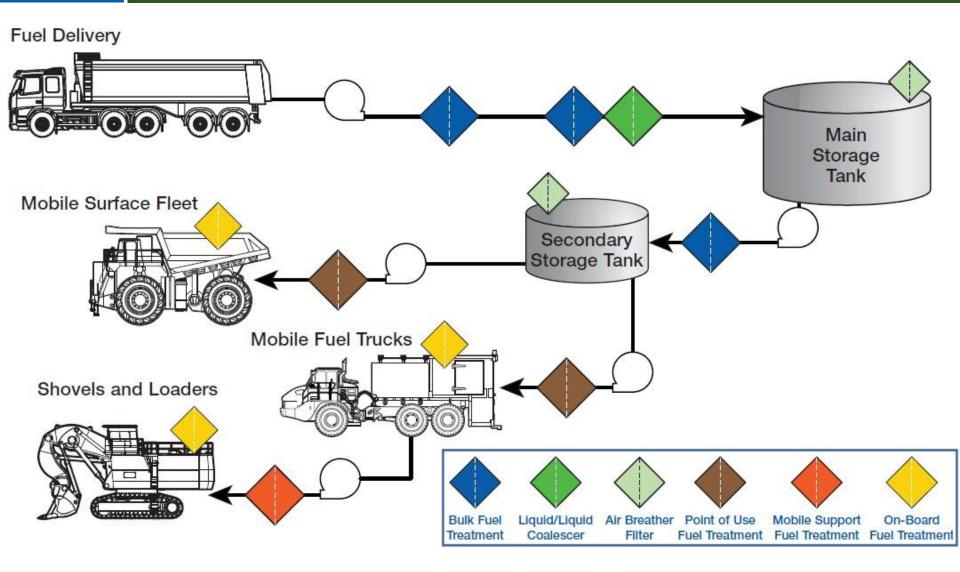
Disclaimer

This presentation is the Confidential work product of Pall Corporation and no portion of this presentation may be copied, published, performed, or redistributed without the express written authority of a Pall corporate officer.

© 2013 Pall Corporation

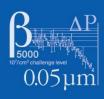
Application description

- Typical Diesel fuel supply chain in surface mines
- The contamination challenge
- Critical components
- Cleanliness management
- Advanced filtration technology
- Case study
- Summary

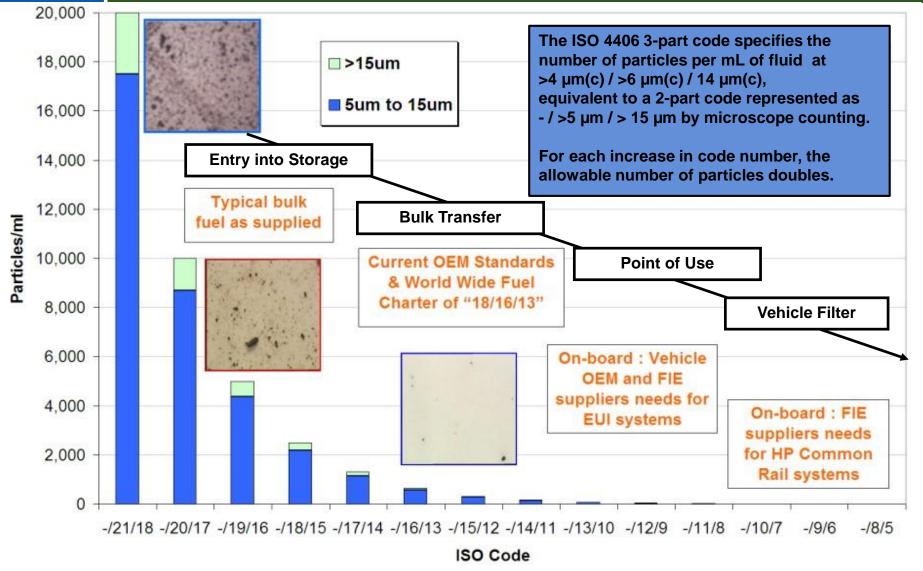

Application Description

The Formula for your Success sm

Typical Diesel Fuel Supply Chain in Surface Mines



- Fuel cleanliness levels can vary significantly
 - ISO 4406 cleanliness level for incoming fuel up to 22/20/17
 - Roughly equivalent to a gravimetric level of 20 mg/L
 - Depending on geographic location and mode of transportation, incoming fuel can also contain free water
- Over the course of a year, the quantities are significant^{*}:

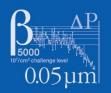

ISO 4406 Cleanliness Code	22/20/17	20/18/15	18/16/13	12/9/6
Kilograms of particulate contaminant pumped per year	800	200	50	0.4
Water Content (ppm)	5000	1000	500	100
Liters of water equivalent pumped per year	250,000	50,000	25,000	5,000

* at 134,000 L/day



Fuel Cleanliness Requirements

Critical Component – Fuel Injectors (High Pressure Common Rail / HPCR)


- On-board fuel injectors are by far the most critical component in the entire fuel supply / delivery chain
 - Modern HPCR fuel injectors require far superior fuel cleanliness levels than older mechanical or hydraulic injection systems
 - Up to 30 times cleaner
 - Reasons
 - Injection pressures as high as 40,000 psi
 - Injector clearances as small as 2 μm
 - Injector solenoid values operating up to 70 times per second with movements as small as 30 μm

- Mobile Equipment Fuel Systems
 - Premature plugging of on-board fuel filter
 - Not meeting scheduled maintenance change-out interval
 - Loss of engine power
 - Injector failure or not meeting OEM life expectation
 - Increase of emissions
 - Soot formation
 - Incomplete combustion
- Lost production

Fuel Injection Equipment OEM Cleanliness Specification

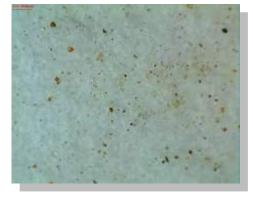
- "Severe" = off-highway vehicles
- Contamination level not to exceed ISO 4406 16/13/8
- Contamination level not to exceed ISO 4406 12/9/7 for <35% of service hours
- No restriction on service hours if fuel cleanliness at point of injection is ISO 4406 11/8/7

Advanced, supplementary filtration technology at bulk and point-of-use locations necessary to ensure these cleanliness levels.

Cleanliness Management Strategies

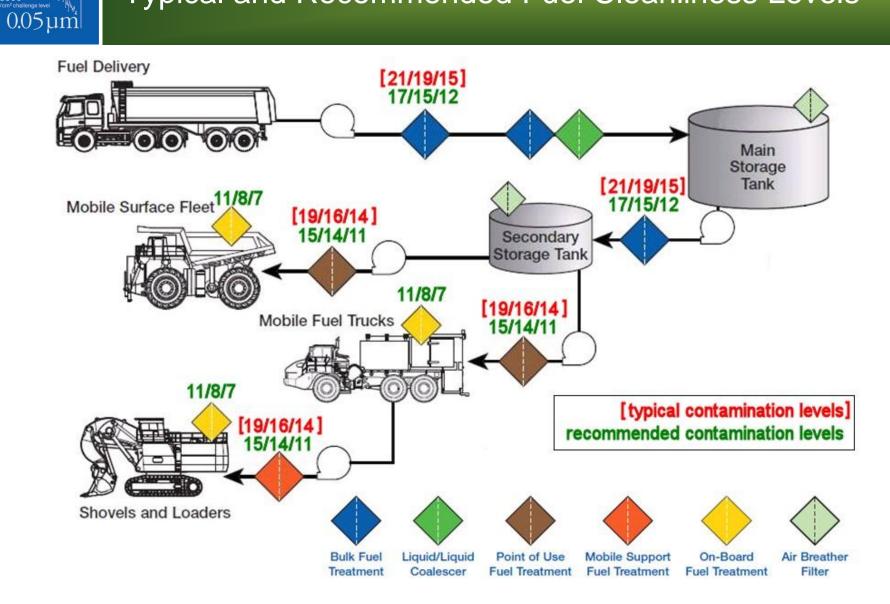
Main Components

- Fuel supply chain audit
 - Assess and document the status quo
- Determine required target fuel cleanliness levels
 - Based on critical points in process
- Select and size the required filtration
- Continuous monitoring and data acquisition
 - Fuel cleanliness
 - Particulate contamination
 - Productivity
 - Maintenance costs



- The process starts with an audit to understand the current conditions
 - Understand the overall system and how fuel is stored and moved around the site
 - What cleanliness levels are being achieved at various locations around the site?
 - What filtration, if any, is currently used?
 - Assess optimum locations of possible contamination control systems should they be required after the audit

Dirty fuel nozzle



Diesel ISO 20/19/17

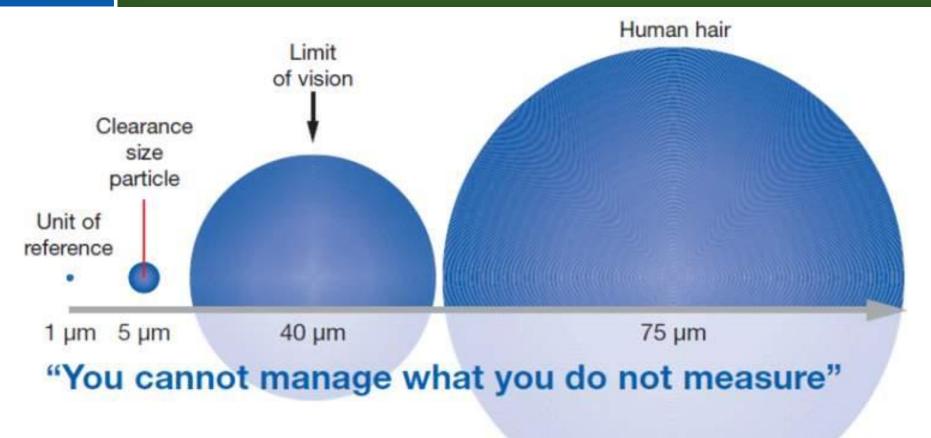
- Filtration systems are key to overall success of maintaining diesel fuel cleanliness
- Proper sizing is critical
 - Single pass application
 - Only one chance to remove contamination
 - Must consider volumetric flow rate and total annual volume processed

Deliver	ed Fuel ISO Cleanliness Level		
23/21/18	21/19/16	19/17/14	16/14/11
160 (352.7)	40 (88.2)	10 (22)	1 (2.2)
480 (1,058.2)	120 (264.6)	30 (66.1)	4 (8.8)
832 (1,834.2)	208 (458.6)	52 (114.6)	6 (13.2)
1,664 (3,668.5)	416 (917.1)	104 (229.3)	13 (28.7)
2,560 (5,643.8)	640 (1,411)	160 (352.7)	20 (44.1)
	23/21/18 160 (352.7) 480 (1,058.2) 832 (1,834.2) 1,664 (3,668.5)	23/21/18 21/19/16 160 (352.7) 40 (88.2) 480 (1,058.2) 120 (264.6) 832 (1,834.2) 208 (458.6) 1,664 (3,668.5) 416 (917.1)	160 (352.7)40 (88.2)10 (22)480 (1,058.2)120 (264.6)30 (66.1)832 (1,834.2)208 (458.6)52 (114.6)1,664 (3,668.5)416 (917.1)104 (229.3)

Figure 1: Annual Fuel Contamination Mass, kg (lb)*

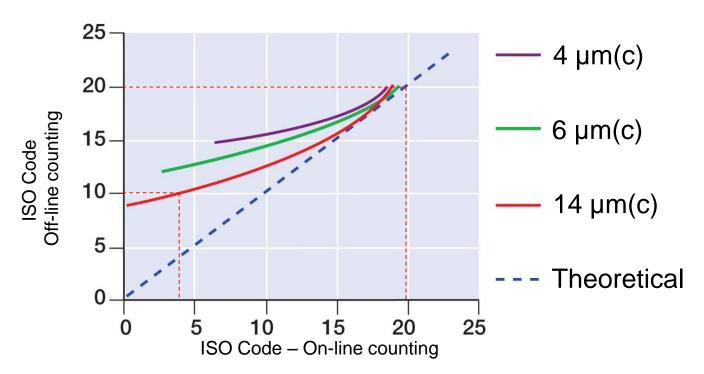
* Contamination masses calculated based on mass of ISO FTD.

- Conventional bulk fuel filtration installations
 - Filter elements usually constructed with cellulose filtration media
 - Typical filtration ratios:
 - β = 50 (98% efficient) or β = 75 (98.7% efficient) at various micron ratings, ranging from 6 to 40 µm
- Diesel fuel supply chain filtration applications are singlepass, i.e. the fuel only gets filtered once, without recirculation
 - Fuel filtered with conventional filters can still contain significant quantities of particulate contamination
 - Transported down the fuel supply chain



- Superior filtration ratio of β = 1000 (99.9% efficient) at stated micron rating
- Long service life due to
 - Maximized filtration medium surface area
 - Laid-over-pleat construction
 - Synthetic (glass fiber) fiber filtration media

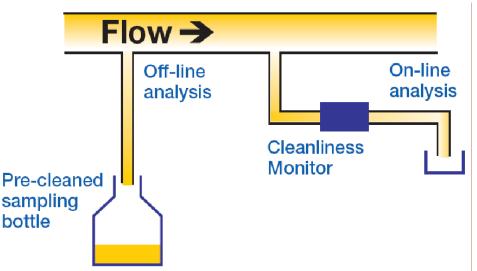
Contamination Measurement



"Micron" = micrometer = μ m 1 micron = 0.001 mm (0.000039 inch) 10 micron = 0.01 mm (0.0004 inch)

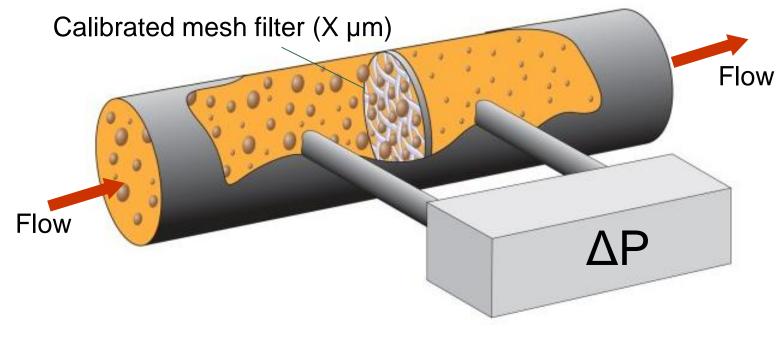
Fluid Sampling Methods

Comparison of on-line counting and off-line counting


- At higher contamination levels (higher ISO codes) there is little difference between the two methods
- With cleaner oil/fuel, the difference between the two methods increases dramatically

0.05µm

Proper Fluid Sampling


Factors influencing the accuracy of off-line analysis:

- Introduction of environmental dirt into sample bottle
- Incorrect cleaning of sample bottle
- Inadequate flushing of sampling valve
- Effectiveness of sampling process

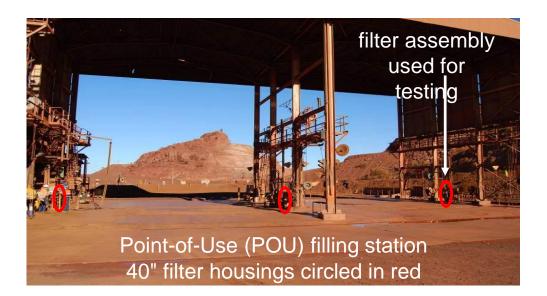
Mesh Blockage Devices

Method	Units	Operation	Benefits	Limitations
Mesh Blockage	Cleanliness Code	Off-line, On-line	Not affected by fluid opacity, free water or air in fluid sample	Only two particle size ranges

Examples

- 10 x 5 µm nominally rated pleated paper filter elements
- Flow rate 100 gpm
- Diesel fuel
- Filled into 200,000 gallon (US) storage tanks
- Typical operating temperature 80 °F
- Change-out at 15 psid differential pressure
- Upgraded original filter elements with high-performance, synthetic filter elements, rated at 7 µm(c)
 - Change-out differential pressure 30 psid
 - More filtration area
 - <u>But:</u> Over 6X the price (per filter element)

Example 1 – Results


- Upgrade filter elements lasted three times longer
- Annual cost benefit to operator: > \$7,000
 - <u>Increased</u> procurement costs by \$23,000
 - <u>Reduced</u> operational costs by \$27,500
 - Due to higher change-out differential pressure (fewer change-outs)
 - <u>Reduced</u> disposal costs by \$2,500
 - Cost savings for fewer maintenance man hours not included
- Improved fuel ISO code from 17/15/11 to 14/12/9

Sampling location	ISO 4406 Cleanliness Code*
Truck off-load	20/18/11
Upstream POU filter assembly	17/15/12
Downstream POU filter assembly	14/12/9

- Surface mine Diesel fuel "point-of-use" filling station
 - Incoming fuel cleanliness typically ISO 4406: 19/17/11
 - Target fuel cleanliness at dispensing nozzle ISO 4406: 16/14/11

Example 2 – Results

- 40" pleated filter elements with glass fiber filtration media
 - Filtration grade 5 µm(c)
 - Single-pass filtration
 - Flow rate up to 300 L/min (80 gpm)
 - Field service life: 1 month

Sampling location	ISO 4406 Cleanliness Code
Upstream POU filter assembly	19/17/11
Downstream POU filter assembly	13/7/1

Target cleanliness level: 16/14/11

- Off-load flow rate 400 gpm
 - Incoming ISO cleanliness codes as high as 22/20/13
- Filled into two 200,000 gallon (US) storage tanks
- No Point-of-use (POU) filtration
 - Typical fuel cleanliness codes 20/16/11
 - Indicative of some settling in storage tanks
 - Target fuel cleanliness code 15/13/10
- Installed high-performance, synthetic filter elements
 - Bulk off-load: rated at 12 μ m(c)
 - Bulk transfer: rated at 6 μ m(c)
 - Point-of-use: rated at $5 \mu m(c)$

Example 3 - Results

- Point-of-use is cleanliness code 14/13/11
- In the first three months of operation
 - ZERO injector failures were experienced
 - Improved service life of on-board fuel filters
 - trucks now meet scheduled service intervals for filter element replacement
 - Improved vehicle reliability
 - Increased production potential from existing fleet

Summary

- Modern Diesel fuel injection systems are very sensitive to particulate contamination and water
 - On-board fuel filters are installed on all Diesel-powered mining vehicles
- Without bulk or point-of-use filtration, service life of the onboard filter elements can vary greatly as a function of the contamination concentration in the incoming fuel
 - Service life of on-board filter elements must coincide with vehicle maintenance/service intervals
- High-performance, point-of-use and/or bulk filtration is recommended to ensure a consistently high fuel cleanliness going into the vehicle's fuel tank

The Formula for your Success sm