

EMERSON Process Management

Vibration Monitoring of Electric **Rope** Shovels

Dan Nower, P.E. Emerson Process Management/Asset Optimization Machinery Health Management Business Group

Vibration Monitoring of Shovels

- MINExpo 2012: Caterpillar announced the largest Electric Rope Shovel, capable of 120 short tons
- The next day, JoyGlobal (P&H Mining) CAT, introduced a shovel capable of 135 short tons
- Large Concern: breakdown (unplanned outages) of one machine will be more disruptive to production

Machinery Health Overview

Diagnosing machines is similar to diagnosing people

Vibration: The 'pulse' of the machine

e The 'life blood' of the machine 'Taking its temperature'

MHM Throughout the Mine

The Mining Pinch

- Because of global demands, Mine operations cannot afford any of their critical assets to shut down unexpectedly
- Electric Rope Shovels are one of the most critical assets in Open Pit Mining
- Shovels are very large, complex machines with large rolling element bearings and gearboxes
- This machine complexity combined with the tough 24/7 service duty results in too much unplanned shovel downtime
- This unplanned downtime can affect the entire downstream process

Shovel's Part in the Mining Pinch

- Due to the machine complexity, Vibration Analysis and PeakVue[®] tends to be the best technologies to determine the Machine's Health
- Arguably, shovels are the most difficult to monitor because of their inconsistent, short cycles and variable load operation (video)
- The Machine Health of most shovels is not monitored in any way
- Progressive mines remove shovels from operation monthly to determine machine health, but there are issues with production and safety

Manual Monitoring of Shovels

- Portable (Manual) Route is ideally scheduled every month
- Requires a 3-6 hour planned outage that is difficult to coordinate
- No other maintenance activity can be performed
- Frequently the task is rescheduled
- Safety issues during manual data collection
- Requires specialized pit technicians

Automate Shovel Monitoring

- The solution is to automate the shovel monitoring
- Utilizing the adaptive monitoring of Emerson's online monitoring system has proven to capture consistent, repeatable data to accurately determine shovel health
- Emerson's online monitoring system can continuously monitor the health of the following Shovel Systems
 - Swing
 - Hoist
 - Crowd
 - Propel

Shovel Primary Systems

Shovel Primary Drive Systems

System Implementation Challenges

- System Design: Where to install the Sensors
- Installation Time
 - System Cabinet
 - Sensors, Junction Boxes and Cabling
 - Cabinet Acquisition Screen
- Data Collection
- Getting Data out of the Pit

System Design

Plan View: Shovel Machinery Deck

Installation Time: Vibration Monitoring Cabinet

CSI 6500 Cabinet

Installation Time: Wiring Harnesses

Cable Assemblies

Installation Time: Plug & Play

Cable Connectors on Cabinet

Data Acquisition: Typical Operation & Staged Testing

Test controlled by operator or remote personnel

Start Crowd Image: Start Crowd Test Start Crowd Image: Start Crowd Test Start Crowd Image: Start Crowd Test Image: Start Crowd Test Image: Start Crowd Test Image: Start Swing Test Image: Start Swing Test Image: Start Swing Test Image: Start Swing Test Image: Start Swing Test Image: Start Swing Test	Start Hoist Test	 Begin Test - Crowd out almost to limits and quickly move the hoist up and down Testing underweigh - Continute hoisting up and down Test Completed - Stop Hoisting
Start Swing [©] Begin Test - Raise the bucket to be under the boom end - set the hoist and cro brakes. Begin swinging to the right at maximum speed. Test [©] Testing underweigh - Continute Swinging to the right	Start Crowd Test	 Begin Test - Raise dipper until the dipper handles are at perpendicular to the boom and at the inner limits. Set the hoist brake. Move the crowd in and out at maximum speed. Testing underweigh - Continute crowding in and out Test Completed - Stop crowding
Start Swing Test Image: Start Swinging to the right		Begin Test - Raise the bucket to be under the boom end - set the hoist and cro buckets. Regin surjections to the eight at maximum speed.
	Start Swing Test	Testing underweigh - Continute Swinging to the right
		Itesting underweigh - Continute Swinging to the right

Data Acquisition: Primary Test Criteria: Repeatability

- The system was able to trigger and collect data both during staged test and during digging operations:
 - High Resolution data was collected each cycle during dipper latching

Data Acquisition: What faults can be found?

CHALLENGE

- It is difficult to monitor complex gearboxes and non-traditional motors
- Complexity comes from variable speed + variable load + short duration operations which makes data gathering difficult

SOLUTION

- Online continuous vibration monitoring with PeakVue provides earliest possible detection of swing, hoist, and crowd issues ranging from bearing anomalies to gear mesh and impacting
- Example: Identified a problem in the crowd transmission → planned shutdown
- Example: Identified a problem with shovel hoist gear wear → planned shutdown

Failed Shovel Hoist Gear

How is the data uploaded?

Customer's Choice

How is the data uploaded?

Manual Wireless Backhaul

Local Analysis

Automatic Wireless Backhaul

- Local Analysis
- Remote Analysis
- Satellite Upload
 - Remote Analysis

Major OEM Recognizes MHM Value

Site: Global

Work Scope per Shovel

- Continuous Monitor: CSI 6500 Prediction units
- AMS Machinery Manager installed onboard shovel
- Sensors with Plug & Play cables

- JoyGlobal is the largest manufacturer of mobile mining equipment in the world
- Covers Online Vibration Monitoring on P&H's Centurion[®] Controlled Shovels
- Hoist, Crowd and Swing systems are monitored with standard system vibration monitoring system
- Integrated to the JoyGlobal PreVail[®] Remote Monitoring System to send vibration information to the JoyGlobal HQ

Enjoy Responsibly

Electric Rope Shovel Monitoring

For more Details:

- Emerson Process Experts Blog <u>http://www.emersonprocessxperts.com/2011/10/if-it-moves-monitor-it/</u>
- Maintenance World Magazine <u>http://palvelut.promaint.net/lehti/maintworld 2 2013.html</u>
- Contact Information <u>dan.nower@emerson.com</u>

QUESTIONS?