Test Results of a GPS-based Collision Avoidance System at Line Creek Operations

Todd Ruff, SAFEmine Technology USA

Tarn Medinski, Teck ART

Teck

Haulage & Loading 2013, Phoenix, AZ

Teck ART - Project Charter

- Evaluate proximity detection technologies and suppliers to select a Teck technology standard
- Reduce the number and severity of equipment accidents
- Key issues:
 - Understand Mine Ops environment and SOP's
 - Solution must support not replace existing safety measures
 - Minimize operator overload and nuisance alarms
 - Potential for technology integration

Trial Objectives

- Show effectiveness of SAFEmine in increasing operator awareness of nearby equipment and potential collisions
- On/Off study to show changes in operator behavior
- Show adaptability to meet mine's specific requirements
- Two key scenarios:
 - Light vehicle and heavy vehicle interactions
 - Vehicles and equipment near the shovel

SAFEmine - The Company

- 35 mines on four continents operating with SAFEmine
- More than 14,000 vehicles protected by SAFEmine Collision Avoidance Systems (CAS)
- More than 1,000 with live tracking & reporting
- World standard for CAS in aviation
- Developed for surface mining with Anglo American

SAFEmine CAS

- GPS-based collision avoidance with peer-to-peer radio communication
- Traffic awareness and collision avoidance functions based on position, speed, heading, and vehicle type
- Simple and rugged design
- Optional radar, camera integration (not part of this trial)

GPS/RF antenna

Receiver/ Processing unit

SAFEmine CAS - Awareness and Avoidance

Level 1: Traffic Awareness	Level 2: Collision Avoidance
 visual info = anticipate danger based on: proximity, position 	 audible alarm = call to action based on: Dynamic Safety Zones (pat. pending)

SAFEmine CAS - Awareness and Avoidance

Level 1: Traffic Awareness

- display indicates surrounding vehicles (360°), no blind spots
- several vehicles displayed simultaneously

Level 2: Collision Avoidance

- intelligent warnings alert the driver
- based on: Dynamic Safety Zones

SAFEmine CAS - Traffic Awareness

SAFEmine CAS - Collision Avoidance

SAFEmine CAS - Functions

Function	Detail
Traffic Awareness & Collision Avoidance	360 deg. awareness, simple displayNo blind spots
Black Box Recording	 Continuous recording of vehicle parameters Analysis of incidents & near misses (logfiles)
Fixed Hazard Mapping	GeofencingFixed hazards: stop signs, overhead power lines
Speeding	Vehicle specific speed limitGeographical speeding
SyncStation	 Auto update of firmware and configuration
Real-time Tracking/Reports	Web-based tracking and vehicle statusWiFi or GSM connectivity

Trial Design

- Teck's Line Creek Operations in BC, Canada
- 8-week study on 12 machines and vehicles:
 - OFF phase: 3 weeks system running, but no alarms or traffic indicators to operators (baseline)
 - ON phase: 5 weeks with alarms and indicators on
- Equipment outfitted:
 - 4 haul trucks (250 ton)
 - 1 shovel (electric)
 - 1 rubber tire dozer
 - 1 front-end loader
 - 5 light vehicles (lube truck and pickups)

System Installation Examples

Data Collected

- Main unit stores 2-3 days of system data:
 - Vehicle position, speed, heading, GPS status, alarm information, nearby vehicles, etc., recorded every second
 - Downloaded from vehicle's unit via WiFi remote link (from our HQ in Switzerland!)
 - Analyzed over 50 million data entries
- Operator and manager feedback
 - Interviews
 - Feedback forms

Evaluation Criteria from Teck

- System Accuracy
- System Reliability
- System Usability
- Overall Site Safety Improvement

Results (from Teck)

	Evaluation Criteria	Test Result	Testing Methodology	
System Accuracy	Does system alarm when it is meant to	Success	Closed Environment testing and operator feedback	
System Accuracy	GPS Precision <2m 85% of the time	 77% of time within 2m 92% of time within 3m 98% of time within 4m 	Stationary GPS test	
System Reliability	Greater than 95% GPS coverage in the pit	Success	% Time signal lost on system for all units	
System Reliability	Greater than 95% Peer to Peer communication availability	Success (99.9%)	Stationary communication test	
System Reliability	System uptime of 99%	Success	Downtime due to system issues	
System Usability	Operator input regarding the system is positive	Success	Operator interviews	
System Usability	Administration of mobile units takes less than 5 minutes to install	Success	Installation of a quick mount unit	
Overall Site Improvement	An overall reduction of proximity events (per operating hour) based on pre-trial baseline data obtained Reduction in speeding events	Limited conclusions due to inconsistency of data and traffic patterns Success	Off and On phase alarm comparison	

3421

Results – Speeding Events (from Teck)

Data comparison over 4 days in the "Off" and "On" phases - mine helper truck				
Number of overspeeds during OFF phase	123			
Number of overspeeds during ON phase	57			
Maximum speed over 65km/hr OFF	25	(15 mph)		
Maximum speed over 65 km/hr ON	1			
Number of overspeeds 5km/hr over limit OFF	18			
Number of overspeeds 5km/hr over limit ON	0			
Number of overspeeds 10km/hr over limit OFF	11			
Number of overspeeds 10km/hr over limit ON	0			

Results – Special Cases

Shovel - normal operation:

 Shovel system will alarm when dozer or other vehicle is within boom swing radius

 Shovel system does not alarm when truck is loading

Results – Special Cases

Shovel:

- SAFEmine system knows what type of vehicle is nearby
- Need to allow dozer to clean up next to shovel
- Provide reminder to both shovel operator and dozer operator that they are close, but not full collision alarm
- Full collision alarms remain for light vehicles within boom swing

Results – Special Cases

Loader and Haul Truck:

- Need to allow loader to approach truck with no alarms
- Truck is stationary no alarms
- Provide detection when loader reverses

SAFEmine TRACK

Real-time tracking and remote connectivity:

- Locate equipment quickly
- Monitor equipment status
- Speed and area alerts
- Reports for maintenance and training
- Remote connectivity for offsite support

Summary

Teck's feedback:

- Useful tool to increase operator awareness in poor weather, at night, or in the fog
- Operators found SAFEmine was very helpful in keeping track of light vehicles around heavy equipment
- Speeding events were drastically reduced due to SAFEmine speeding alarms
- Early training and operator involvement is essential
- Strong site commitment needed

SAFEmine's experience:

- Extremely important to minimize nuisance alarms intelligent alarming based on context and risk is critical
- Dynamic safety zones based on vehicle speed and type further limit alarms to just those that require action
- Operators will change their driving behavior to avoid dangerous situations
- Real-time tracking and reporting increases value
- Trial was successful and additional trial in progress at Teck's Carmen de Andacollo mine in Chile

One Screen for Traffic Safety

- Integrate safety technologies
 - Collision avoidance
 - Cameras
 - Fatigue monitoring
- Reduce clutter in the cab
- One display for safety systems

Todd Ruff SAFEmine Technology USA todd.ruff@safe-mine.com

Thank you for your attention!